Titolo | Soft computing based optimization of combined cycled power plant start-up operation with fitness approximation methods |
---|---|
Tipo di pubblicazione | Articolo su Rivista peer-reviewed |
Anno di Pubblicazione | 2011 |
Autori | Bertini, I., De Felice Matteo, Pannicelli A., and Pizzuti S. |
Rivista | Applied Soft Computing Journal |
Volume | 11 |
Paginazione | 4110-4116 |
ISSN | 15684946 |
Parole chiave | Approximation algorithms, Approximation methods, Approximation techniques, Approximation theory, Combined cycle power plants, Complex software, Computation theory, Computational loads, Evolutionary computations, Fitness evaluations, Fuzzy logic, Fuzzy sets, Genetic algorithms, Health, Mathematical operators, Optimization, Plant operators, Process optimization, Process Variables, Soft computing, Software simulator, Software testing, Start-ups |
Abstract | This paper describes an application of fuzzy-logic and evolutionary computation to the optimization of the start-up phase of a combined cycle power plant. We modelled process experts' knowledge with fuzzy sets over the process variables in order to get the needed cost function for the genetic algorithm (GA) we used to obtain the optimal regulations. Due to the obvious impossibility to test the resulting inputs on the real plant we used a complex software simulator to evaluate the performance of the solutions. In order to reduce the computational load of the whole procedure we implemented for the genetic algorithm a novel fitness approximation technique, cutting by 98% the number of fitness evaluations, i.e. software simulator runs with respect to a genetic algorithm without fitness approximation. Moreover, solutions found by our methods remarkably improved the solutions given by the plant operators. © 2010 Elsevier B.V. All rights reserved. |
Note | cited By 11 |
URL | https://www.scopus.com/inward/record.uri?eid=2-s2.0-79956068250&doi=10.1016%2fj.asoc.2011.02.028&partnerID=40&md5=142fb8664756e994c3863c86ee171fad |
DOI | 10.1016/j.asoc.2011.02.028 |
Citation Key | Bertini20114110 |