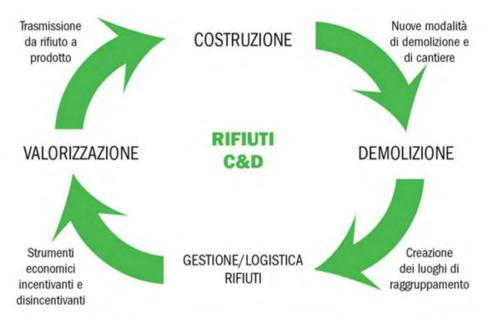


Gli Aggregati Riciclati : Economia Circolare nel Settore delle Costruzioni

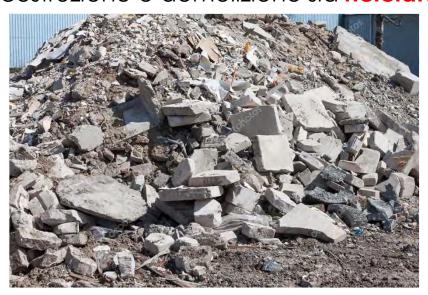
Rimini 5 – 8 Novembre 2019

Relatore: Dott. Ing. Luisa Pani

Dipartimento di Ingegneria Civile, Ambientale e Architettura - Università di Cagliari



ECONOMIA CIRCOLARE NEL SETTORE DELLE COSTRUZIONI


ECOMONDO

Progettiamo un mondo migliore.

- I rifiuti da costruzione e demolizione (C&D), ai sensi della legislazione italiana e all'art. 184 del decreto legislativo 152/06, sono considerati rifiuti speciali.
- C&D devono essere smaltiti in discarica, se invece abbandonati generano gravi conseguenze ambientali.
- In Italia, i C&D riciclati sono impiegati soprattutto come materiale di riempimento e per sottofondi stradali.
- In altri paesi europei il loro impiego è più ampio e redditizio, ad esempio in strutture più nobili come le costruzioni in calcestruzzo armato.

La Direttiva Europea 2008/98/CE impone che il **70%** delle macerie da costruzione e demolizione sia **riciclato**

| Criteri Ambientali Minimi (CAM)

individuano la soluzione progettuale migliore sotto il profilo ambientale tenuto conto della disponibilità di mercato.

In Italia tutte le stazioni appaltanti sono obbligate a rispettare i CAM secondo:

- L. 221/2015
- D.lgs. 50/2016

L. Pani, L. Francesconi, J. Rombi, A. Mereu, L. Tuveri G. "Recycled Aggregates: Circular Economy in the construction sector"

La politica nazionale e regionale in materia di appalti pubblici verdi deve essere incisiva non solo nell'obiettivo di ridurre gli impatti ambientali, ma nell'obiettivo di promuovere modelli di produzione e consumo più sostenibili, "circolari " e nel diffondere l'occupazione "verde".

Novità molto importante per la Sardegna, il Prezzario Regionale 2019 contiene per la prima volta la voce Aggregati Riciclati.

Processi necessari, ma attualmente assenti

Mappatura dei rifiuti

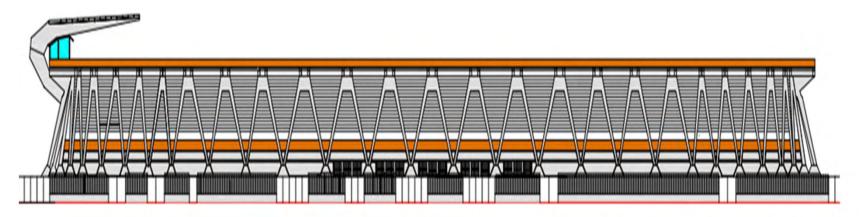
Decreto End of Waste per i C&D

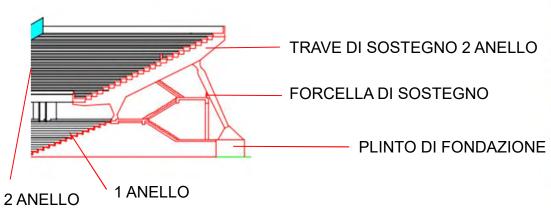
Demolizione selettiva

Gruppo di Ricerca Università di Cagliari

Associazioni di Categoria

CASI STUDIO


- Riciclaggio delle macerie prodotte dalla demolizione di una grande struttura
- Uso degli aggregati riciclati in Aziende di prefabbricazione
- Uso di aggregati e calcestruzzo riciclato nella Pianificazione Urbanistica


Caso Studio:

INDAGINE SPERIMENTALE SUGLI AGGREGATI RICICLATI – STADIO SANT'ELIA

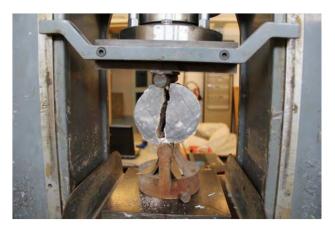
ECOMONDO Progettiamo un mondo migliore.

> CARATTERIZZAZIONE DEL CALCESTRUZZO GENITORE

L. Pani, L. Francesconi, J. Rombi, A. Mereu, L. Tuveri G. "Recycled Aggregates: Circular Economy in the construction sector"

> CARATTERIZZAZIONE DEL CALCESTRUZZO GENITORE

Carotaggi Trave e Plinto



Prova a compressione

Test di carbonatazione

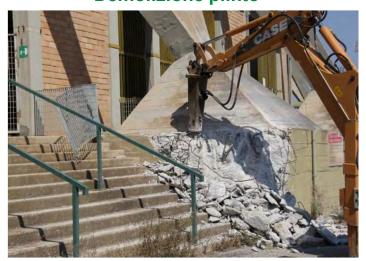
Prova di trazione indiretta

> CARATTERIZZAZIONE DEL CALCESTRUZZO GENITORE

Test Modulo Elastico

Analisi petrografica sulle sezioni sottili dei campioni

Identificazione	Profondità di carbonatazione (mm)	Densità media (kg/m³)	Resistenza a compressione media (MPa)	Modulo elastico medio (MPa)	Resistenza a trazione media (MPa)
C. Fond.	10	2314	27.9	25335.3	2.04
C. Tr.	31	2270	21.0	18041.6	1.49


> GLI AGGREGATI RICICLATI - DEMOLIZIONE E LAVORAZIONE DELLE MACERIE

Demolizione trave

Demolizione plinto

Impianto di riciclaggio

L. Pani, L. Francesconi, J. Rombi, A. Mereu, L. Tuveri G. "Recycled Aggregates: Circular Economy in the construction sector"

> GLI AGGREGATI RICICLATI - CARATTERIZZAZIONE DEGLI RA

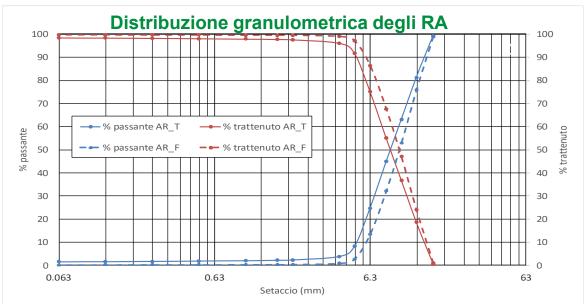
ECOMONDO

Progettiamo un mondo migliore.

Quartatura e Analisi Granulometrica

Prova Los Angeles

Determinazione dell'Assorbimento



Indice di Forma

in accordo con UNI EN 12620: 2008 e UNI 8520-1: 2015

L. Pani, L. Francesconi, J. Rombi, A. Mereu, L. Tuveri G. "Recycled Aggregates: Circular Economy in the construction sector"

Risultati delle prove sugli RA

			Proprietà	RA_F	RA_T	
			Dimensione granuli	4/16	4/16	
			Categoria granulometrica	$G_{\rm C}$ 90/15, $G_{\rm T}$ 17.5	$G_{\rm C}$ 90/15, $G_{\rm T}$ 17.5	
			Indice di appiattimento	4	4	
			Indice di forma	59	34	
			Densità saturazione a sup. asciutta	2.39 Mg/m^3	2.38 Mg/m^3	
			Densità apparente e vuoti	$\rho_b = 1.23 \text{ Mg/m}^3 \text{ v}\% = 45$	$\rho_b = 1.14 \text{ Mg/m}^3 \text{ v}\% = 49$	
			Percentuale dei fini	0.15%	0.59%	
Contenuto di m	ıalta residu	ıa negli RA	Percentuale di conchiglie	assente	assente	
RMC (%)	RA F	RA T	Resistenza alla frammentazione	39	39	
Trattenuto al			Costituenti aggregati riciclati grossi	$X = 0$; $R_c = 74\%$; $R_u =$	$X = 0; R_c = 78\%; R_u =$	
setaccio 4 mm	55 81%		Costituenti aggi egati i iciciati gi ossi	27% ; $R_b = 0$; $R_a = 0$; $R_g = 0$	22% ; $R_b = 0$; $R_a = 0$; $R_g = 0$	
			Contenuto di cloruri idrosolubili	0.005%	0.005%	
Trattenuto al	45.82%	45.65%	Contenuto di cloruri solubili in acido	0.325%	0.325%	
setaccio 10 mm	10102 70	10,00,70	Contenuto dei solfati solubili in acido	0.43%	0.26%	
			Determinazione dei solfati	S < 0.1%	S < 0.1%	
			Contenuto dei solfati idrosolubili	SS = 0.148%	SS = 0.068%	
			Contaminanti leggeri	assente	assente	
			Acqua di assorbimento	$\mathbf{WA}_{24} = 7.0$	$WA_{24} = 6.7$	
			Resistenza al gelo e disgelo	41%	42%	
			Resistenza al solfato di magnesio	2.56%	0%	
L. Pani, L. France	esconi, J. Ron	nbi, A. Mereu,	. Ti Presenza diduvi ed Aggregates: O	ircular Fc 3985719 in the cor	nstruction 3886446 "	

Contenuto di malta residua negli RA

RMC (%)	RA_F	RA_T
Trattenuto al setaccio 4 mm	55.81%	49.67%
Trattenuto al setaccio 10 mm	45.82%	45.65%

> CALCESTRUZZI RICICLATI - STUDIO DELLE MISCELE

Slump Test T0

Slump Test T30

Proporzioni delle miscele di calcestruzzo

Notazione	a/c	Cemento (kg/m³)	acqua (l/m³)	NA fine (kg/m³)	NA grosso (kg/m³)	RA_F grosso (kg/m³)	RA_T grosso (kg/m³)	Additivo (kg/m³)	Densità (kg/m³)
NC	0.463	400	185	847.49	880.06	-	-	2.91	2322
RC_T30%	0.463	400	185	821.8	616.04	-	263.69	3.31	2293
RC_F30%	0.463	400	185	821.8	616.04	263.69	-	3.31	2287
RC_T50%	0.463	400	185	802.97	440.03	-	440.27	3.31	2298
RC_F50%	0.463	400	185	802.97	440.03	440.27	-	4.00	2283
RC_T80%	0.463	400	185	778.15	176.01	-	703.96	4.00	2268
RC_F80%	0.463	400	185	778.15	176.01	703.96	-	4.00	2229

> CALCESTRUZZI RICICLATI - CARATTERIZZAZIONE DEGLI RC

Produzione cubetti e cilindri in RC

Resistenza a Compressione

Prestazioni meccaniche del RC

Notazione	Massa Volumica 28 gg (Kg/m³)	Resistenza a compressione 14 gg (MPa)	Resistenza a compressione 28 gg (MPa)	Resistenza a trazione indiretta (MPa)	Modulo Elastico (MPa)
NC	2308	39	42	3.66	26037
RC_T30%	2308	42	45	3.78	23512
RC_F30%	2281	41	44	3.89	24902
RC_T50%	2266	44	44	3.90	23011
RC_F50%	2303	44	47	3.40	25509
RC_T80%	2265	43	47	3.85	23486
RC_F80%	2227	40	44	3.69	24043

ANALISI DEI RISULTATI

>- CARATTERIZZAZIONE DEGLI RA

GLI AGGREGATI RICICLATI SONO IDONEI PER L'IMPIEGO NEL CALCESTRUZZO STRUTTURALE

> CARATTERIZZAZIONE DEGLI RC

IL CALCESTRUZZO RICICLATO E' DI TIPO STRUTTURALE

GLI AGGREGATI RICICLATI E LE AZIENDE DI PREFABBRICAZIONE

ECOMONDO

un mondo migliore.

Produzione di Blocchi in RC

Prova di Assorbimento

Resistenza a Compressione

L. Pani, L. Francesconi, J. Rombi, A. Mereu, L. Tuveri G. "Recycled Aggregates: Circular Economy in the construction sector"

GLI AGGREGATI RICICLATI E LE AZIENDE DI PREFABBRICAZIONE

) / (·	Densità media	Assorbimento medio	Resistenza a compressione
Mix	(kg/m^3)	$\left(g/(m^2\cdot s^{0.5}\right)$	(N/mm^2)
NA	2069	108.9	3.77
20% RA	2009	103.9	3.58
50% RA	2087	93.3	3.58
70% RA	2039	126.3	2.85
100% RA	1954	111.1	3.40

Prova di Assorbimento

Resistenza a Compressione

GLI AGGREGATI RICICLATI E LA PIANIFICAZIONE URBANISTICA

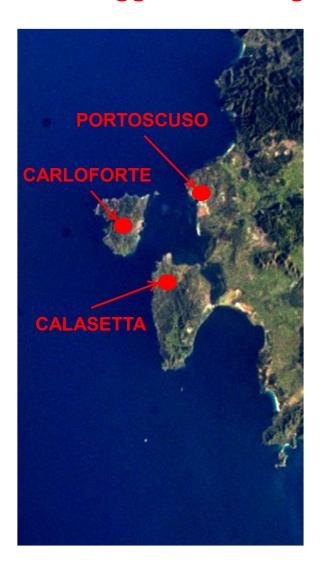
Caso Studio

Uso degli RA nell'elaborazione e attuazione dei piani di utilizzo dei litorali e dei piani urbanistici comunali per tre comuni del Sud Sardegna, nel territorio del Sulcis.

Obiettivo

Definire un approccio metodologico per l'inclusione degli RA nella pianificazione su scala locale

Metodologia


Elaborazione di:

- Un quadro logico della Valutazione Ambientale Strategica (VAS), considerando il Piano Urbanistico Comunale (PUC), il Piano di Utilizzo dei Litorali (PUL) e i Piani di Gestione dei siti della Rete Natura 2000 (PdG).
- Una metodologia per determinare la domanda di RA sulla base delle previsioni del PUC e del PUL.

Comuni oggetto di indagine

Le azioni previste dal PUC, PUL e Pdg sono:

- A Carloforte, per la sottozona F2 (insediamenti turistici spontanei), una espansione turistica delle parti del territorio interamente o parzialmente inedificate destinate a nuovi complessi turistici.
- A Calasetta, la realizzazione di piste ciclabili e pedonali che colleghino il centro con le aree costiere.
- A Portoscuso, la realizzazione di piste ciclabili e pedonali.

Sulla base delle previsioni decennali del PUC, si è stimata la quantità di RA per le nuove costruzioni, la manutenzione di edifici esistenti e la costruzione di piste ciclabili e pedonali.

I dati a disposizione per ogni zona o per ogni isolato sono le volumetrie esistenti e previste, gli indici fondiari e territoriali.

Sulla base del PUC e del PUL, attualmente cogenti, è stata calcolata per una ipotetica costruzione la superficie coperta a partire dalla volumetria e la superficie complessiva.

Per la stima della quantità di materiale si è considerato che la quantità di aggregato necessaria per le Nuove Costruzioni sia pari a circa 2 t/m² e per la Manutenzione di costruzioni esistenti pari a circa 0.1 t/m².

Si è considerato un peso degli aggregati da impiegare pari al 30% del peso del calcestruzzo da confezionare.

Il quantitativo di aggregati necessari per la realizzazione di **Piste ciclabili e pedonali** è pari a circa 0,5 **t/m²**.

Le miscele di RC possono contenere RA grossi in luogo degli NA fino all'80% per gli edifici e pari al 100% per le piste ciclabili e pedonali

Quantità stimate di RA e C&DW da riciclare (previsione PUC decennale)

Comune	Calasetta		Carloforte		Portoscuso	
% sostituzione RA	30%	80%	30%	80%	30%	80%
RA nuove costruzioni (t)	8673 23127		15336	40897	18753	50008
RA manutenzione costruzioni esistenti (t)	152 404		342	911	486	1296
Comune	Calasetta		Carloforte		Portoscuso	
% sostituzione RA	100%		100%		100%	
RA sottofondi stradali (t)	34198		167872		66989	
Comune	Calasetta		Carloforte		Portoscuso	
RA totali (t)	43022	57729	183550	209675	86228	118794
C&D da riciclare (t)	86044	115458	367100	419359	172456	236587

L. Pani, L. Francesconi, J. Rombi, A. Mereu, L. Tuveri G. "Recycled Aggregates: Circular Economy in the construction sector"

Conclusioni

- 1. Il calcestruzzo riciclato prodotto con aggregati riciclati presenta prestazioni meccaniche equivalenti a quelle del calcestruzzo normale, anche quando la percentuale di sostituzione dell'aggregato naturale raggiunge l'80%.
- 2. Le prestazioni del calcestruzzo riciclato non sono correlate alle caratteristiche meccaniche del calcestruzzo genitore, ma è fondamentale definire una composizione accurata della miscela.
- 3. I risultati preliminari dei test di durabilità sul calcestruzzo riciclato mostrano prestazioni ottimali anche a lungo termine.
- 4. Elementi prefabbricati come i blocchi di calcestruzzo, possono essere realizzati con RA, senza modifiche del processo di produzione. Le prestazioni dei blocchi in RC, realizzati con percentuali di sostituzione fino al 50%, non sono influenzate dalla presenza di RA, per percentuali di sostituzione superiori al 70% si possono osservare prestazioni leggermente inferiori.
- 5. La mappatura dei rifiuti e la demolizione selettiva dovrebbero essere promosse e applicate laddove possibile.
- 6. La sinergia fra le associazioni di categoria, il gruppo di ricerca dell'Università di Cagliari e l'Amministrazione Pubblica è necessaria per portare avanti progetti pilota che dimostrino la fattibilità di impiego degli RA nella produzione di calcestruzzo strutturale, nella realizzazione di elementi prefabbricati di calcestruzzo e non soltanto come materiale di riempimento e/o sottofondo stradale.

RINGRAZIAMENTI:

- L'Impianto di riciclaggio di materie prime seconde:
 Rifiuti Edili Recycle, Quartucciu (Cagliari).
- Il Produttore di Calcestruzzo:
 Calcestruzzi s.p.a Italcementi, Quartu Sant'Elena (Cagliari).
- Le Aziende di Prefabbricazione:
 Manufatti in Cemento di Roberto Farris, Villaspeciosa (Cagliari).
 Vibrocemento srl, Monastir (Cagliari).
- La Ditta di Indagini Strutturali:
 Secured Solutions s.r.l. Spin-Off UNICA
- Per il supporto finanziario Sardegna Ricerche (fondi POR FESR 2014/2020 - ASSE PRIORITARIO I "RICERCA SCIENTIFICA, SVILUPPO TECNOLOGICO E INNOVAZIONE).

Grazie a Voi per l'Attenzione